

## **WORKSHOP Energy Big Push**



## **Axis 2 - Performance Indicators of SES**

#### **Carolina Grottera**



CIÊncia, Tecnologia e Inovação

Brasília - Brasil: 30 e 31.10.2019

## Objective

Proposal of performance indicators for selected Sustainable Energy Solution

## Steps:

- Literature Review: Map the main SES performance indicators – technical, economic, social and environmental
- Evaluate the applicability and comprehensiveness of indicators Methodological considerations, interlinkages, etc.
- Provide preliminary results for validation and improvement of study results Brasilia workshop
- Final report
  Workshop inputs / insights

Indicators: what, why, how?

## 'A measure based on verifiable data that conveys information about more than just itself '

(Biodiversity International Partnership, 2011)

- Beyond basic statistics and data
- Purpose dependent  $\rightarrow$  issue of concern
- Holistic approach for decision-making Implications of selected energy, environmental and economic programmes, policies and plans, and their impacts on the shaping of development
- Interlinkages and trade-offs among various dimensions of sustainable development

#### **Desirable attributes of indicators**

- Relevant to users' needs
  Responsive to change in the issue of concern
- Scientifically valid
  Consensus on the causal relationship between the indicator and its purpose
- Practical

Data availability, regular update and reasonable effort

→ Performance indicators: evaluate different energy production and use options relative to sustainability aspects

#### **Environmental indicators**

Water Use

Water Quality and Aquatic Biodiversity

Land Use

Soil Quality and Terrestrial Biodiversity

Greenhouse Gas Emissions

Non-GHG Emissions

Vulnerability and Risks

## **Techno-economic indicators**

Efficiency of Energy Conversion and Use

Technology Readiness Level (TRL)

Technology Ownership

CAPEX

OPEX

**Total Costs** 

Associated Infrastructure Requirements

**Energy Diversity** 

Supply Chain Readiness

#### **Social indicators**

Job Creation

**Income Generation** 

Access to Electricity

**Directly Affected Population** 

Occupational Injury, Illness and Fatalities

**Respect to Communities** 

**Risks to Cultural Heritage** 

## **Political-institutional indicators**

Simplicity of Environmental Licensing Process

Compatibility with Energy Policy and International Agreements

Compatibility with Regulatory and Institutional Framework

#### **Selection of SES**

- Sector level: current and future relevance with respect to economic performance, participation in energy supply and demand and environmental impacts
- Technology level: identified potential for deployment at scale in Brazil, future prospects regarding learning curves, relevance in energy policy and strategic development

Indicator assessment in Axis 2  $\rightarrow$  Pinpoint technologies that shall constitute the roadmap to the ecological transition and set the path to the Big Push for Sustainability in Brazil.

### **Selection of SES**

#### **Centralized Power Generation**

Large Hydro Small Hydro Thermo power (bagasse) Thermo power (biomass) Solar PV CSP Onshore Wind Offshore Wind

#### Mini / Micro Power Generation

Thermo power (biogas, agricultural residues) Solar PV

#### **Transportation**

Light-duty vehicles (BEV, hybrid) Urban buses (BEV, hybrid) Trucks (BEV, hybrid)

#### <u>Biofuels</u>

Bioethanol Biodiesel Biogas (urban solid waste) Biokerosene

Energy distribution and storage Batteries Smart grids



# Preliminary Proposal of Performance Indicators Associated with Sustainable Energy Solutions

#### **Environmental indicators**

Water Use

Water Quality and Aquatic Biodiversity

Land Use

Soil Quality and Terrestrial Biodiversity

Greenhouse Gas Emissions

Non-GHG Emissions

Vulnerability and Risks

**Techno-economic indicators** 

Efficiency of Energy Conversion and Use

Technology Readiness Level (TRL)

Technology Ownership



Associated Infrastructure Requirements

Energy Diversity

Supply Chain Readiness

#### **Social indicators**

Job Creation

**Income Generation** 

Access to Electricity

**Directly Affected Population** 

Occupational Injury, Illness and Fatalities

**Respect to Communities** 

**Risks to Cultural Heritage** 

## **Political-institutional indicators**

Simplicity of Environmental Licensing Process

Compatibility with Energy Policy and International Agreements

Compatibility with Regulatory and Institutional Framework



TRL for all selected SES is 9

→ TRL 9: Actual system proven through mission operation

Except for:

- BEV buses
- BEV trucks
- Hybrid trucks

For which TRL is 8: Actual system completed and qualified through test and demonstration

## **Power generation – Water use**



## **Power generation – Land use**



Source: (EPE, 2017; Bukhary, Ahmad e Batista, 2018; Simsek, Watts e Escobar, 2018; Musial et al., 2016)

## **Power generation – Greenhouse Gas Emissions**



Source: IPCC (IPCC, 2006; Edenhofer et al., 2011)

**Power generation - CAPEX** 



**Power generation - OPEX** 



Source: (EPE, 2018c)

## **Power generation - LCOE**

![](_page_17_Figure_1.jpeg)

**Power generation - Jobs** 

![](_page_18_Figure_1.jpeg)

**Power generation – Jobs** 

![](_page_19_Figure_1.jpeg)

## **Power generation - Income**

![](_page_20_Figure_1.jpeg)

![](_page_21_Picture_0.jpeg)

#### Other aspects to be considered

- Intermittency
- Reliability
- Risks

## **Transportation - Greenhouse Gas Emissions**

![](_page_22_Figure_1.jpeg)

Source: (CETESB, 2019)

## **Transportation – Non-GHG emissions**

![](_page_23_Figure_1.jpeg)

Source: (CETESB, 2019)

**Transportation - CAPEX** 

![](_page_24_Figure_1.jpeg)

## **Transportation - OPEX**

![](_page_25_Figure_1.jpeg)

Transportation - TCO

![](_page_26_Figure_1.jpeg)

![](_page_27_Picture_0.jpeg)

#### Other aspects to be considered

- Other modals
- Investments in infrastructure
- Co-benefits

![](_page_28_Picture_0.jpeg)

![](_page_28_Figure_1.jpeg)

Source: RenovaCalc (ANP, 2019)

## Biofuels – Land use

![](_page_29_Figure_1.jpeg)

.....

Source: RenovaCalc (ANP, 2019)

## **Biofuels - Greenhouse Gas Emissions**

![](_page_30_Figure_1.jpeg)

Biofuels - CAPEX

![](_page_31_Figure_1.jpeg)

![](_page_32_Picture_0.jpeg)

![](_page_32_Figure_1.jpeg)

Biofuels - LCOF

![](_page_33_Figure_1.jpeg)

# Biofuels – Jobs

![](_page_34_Figure_1.jpeg)

. .

![](_page_35_Picture_0.jpeg)

Other aspects to be considered

• Pressure on land use Deforestation, sensitive biomes

![](_page_36_Picture_0.jpeg)

• No silver bullet

• Weighted aspects, priorities

 The right questions to ask → a panel of indicators can be useful to help decision makers navigate by offering technical information on multiple dimensions

 Well informed decision making and coordinated efforts to foster the Big Push

![](_page_37_Picture_0.jpeg)

# Thank you!

carolinagrottera@ppe.ufrj.br

\* Special thanks to Amanda Vinhoza who contributed to the development of this study.